Rubriky

Článků v rubrice: 203

Jaderná fúze bez neutronů

Fúze jádra vodíku (protonu) s jádrem izotopu bóru 11B (pB11) je snem fúzistů od osmdesátých let minulého století. Neutrony jsou totiž prevít – způsobují sekundární radioaktivitu a degradaci konstrukčních materiálů. Dalším velkým snem je touha po přímé přeměně fúzní energie na elektrickou energii. Vynechat okruh s parogenerátorem a turbínou je určitě lákavé. Problém reakce pB11 je v její zápalné teplotě, která je desetkrát vyšší než u reakce DT (deuterium - tritium), a navíc v tom, že její energetický zisk je oproti jednomu aktu reakce DT 2x nižší. Problém přímé přeměny fúzní na elektrickou energii se experimentálně v masovém měřítku neřeší, neboť zatím není vyřešen základní problém, to je průmyslové uvolňování fúzní energie. Přímou přeměnou energie plazmatu na elektrickou energii se zabývá MHD (magneto-hydrodynamický) generátor, zatím spíše laboratorní hračka, než průmyslově používané zařízení.

Neviditelné jeřáby ITERu

Okolo vyrůstajících budov na staveništi ITER samozřejmě vyčuhují normální jeřáby, ale na nich, kromě toho, že pomáhají stavět nejdražší vědeckotechnický experiment v historii lidstva, není nic pozoruhodného. Zato zvnějšku neviditelné jeřáby, co budují tokamak ITER pod střechami v halách, to je jiná…

Stabilizace plazmatu v tokamaku - dříve kožich, dnes elektronika

Při uvolňování energie jadernou fúzí je důležitým parametrem pro zachování ustáleného stavu, aby bylo termojaderné plazma izolováno od stěn nádoby pomocí magnetického pole supravodivých cívek. Supravodivé magnetické cívky mají mnohem menší příkon, než jaký by při stejném magnetickém poli vyžadovaly cívky měděné. Díky supravodičům může sice fúzní reaktor pracovat „neomezeně dlouhou dobu“, ale na druhé straně vzniká jiný problém - pomalejší odezva supravodivých cívek ve srovnání s měděnými cívkami, které taková omezení nemají. Při snížené rychlosti odezvy je obtížné udržet stabilní výboj ve velkém objemu plazmatu nebo s protaženým svislým rozměrem - výškou. Studium tohoto problému v současném supravodivém zařízení je zvláště užitečné pro ITER, mezinárodní fúzní experiment ve výstavbě, který by měl ověřit realizovatelnost jaderné fúze pro energetické účely.

Jak neudělat chybu při stavbě tokamaku ITER

Komplex tzv. Trojbudoví na staveništi ITERu má v nejvyšším bodě 60 metrů. 360 000 tun betonu, oceli, střešní konstrukce a veškeré výbavy a bude se opírat o výztužnou konstrukci seismologické jámy. Ta, tvořená železobetonovým základem a stěnami, představuje dalších 80 000 tun. Na obrázku vidíte průřez Komplexem tokamaku s Budovou diagnostiky na pravé straně a Budovou tritiového hospodářství na levé straně. Uprostřed leží betonové biologické stínění tvořící kruhovou jímku, ve které bude zdola nahoru montován vlastní tokamak ITER. Porovnejte čísla na výkresu s níže uvedenými informacemi.

Lithium je primární surovinou pro termojadernou fúzi

Lithium se v poslední době skloňuje ve všech pádech v souvislosti s nalezením jeho zásob v kopcích kolem krušnohorského Cínovce. Je nejen důležitou surovinou pro Li-Ion baterie, ale je také skutečně všestranným způsobem použitelné v zařízeních pro jadernou fúzi. Od počátku tohoto desetiletí se snaží výzkumníci na tokamaku NSTX v Princeton Plasma Physic Laboratory (dotovaném Ministerstvem pro energii USA) zjistit, zda by šlo některé parametry tokamakového plazmatu vylepšit dodáním lithia do vakuové komory, zejména do nesmírně namáhaného divertoru (místa, odkud se odvádějí zplodiny fúzní reakce). Na podobných otázkách se pracuje také na tokamaku LTX ve stejné laboratoři, na DIII-D v General Atomic a na EAST v čínském Hefai.

40 let od spuštění prvního tokamaku v Československu

V září jsme vzpomněli 60 let od spuštění prvního štěpného reaktoru v Československu. Ale bylo ještě další výročí: 40 let od uvedení do provozu prvního tokamaku v Československu. Kořeny této výjimečné události sahají do doby krátce po založení Ústavu fyziky plazmatu v roce 1959. Tehdy se rozhodovalo o náplni jeho práce a Dr. Miloš Seidl navrhl kromě jiného zkoumat vzájemné působení vysokofrekvenčního (vf) elektromagnetického pole a plazmatu. Začala se tím zabývat dvě oddělení, která sice měnila názvy, ale naštěstí ne tématiku. Zatímco v jednom oddělení se studovala vf pole nestabilit samotného plazmatu, druhé se soustředilo na vzájemné působení vf polí buzených vně plazmatu. Jak experimentální tak teoretické práce byly na velmi dobré úrovni. Zejména studium generace proudu vysokofrekvenčními vlnami vzbudila pozornost sovětských vědců, neboť se nabízel způsob, jak vybudit elektrický proud v plazmatu tokamaku jiným způsobem než původní elektromagnetickou indukcí. Ta totiž činila z tokamaku pulzní zařízení, což v perspektivě termojaderného reaktoru na principu tokamaku nebylo příliš lákavé.

... 1 « 19 20 21 22 23 24 25 » 34 ...

Nejnovější články

Jak buňky „umlčí" genomové zbytky starověkých virů

Pro organismy je klíčové, aby byly schopny kontrolovat, které geny se mají projevit  ve kterých buňkách a kdy. Předpokládá se, že přirozeně se vyskytující chemické ...

Jak rychle probíhá evoluce?

Dá se měřit tempo evoluce? Některé druhy se mohou vyvíjet velmi rychle - jen několik generací. Některé se nevyvíjejí, jsou statisíce let stejné. Když Charles Darwin v polovině 19.

Mikroskopie hlubokého mozku

Představte si, že byste do mozku instalovali „dopravní sledovací kameru“, která by dokázala detekovat buňky způsobující potíže a řítící se po mozkové dálnici ...

Rychlý reaktor BN-800 potvrzuje spolehlivý provoz paliva MOX

Tento sodíkem chlazený rychlý reaktor, 4. blok Bělojarské jaderné elektrárny, zaznamenal rok trvající spolehlivý a bezpečný provoz s téměř plnou vsázkou směsného ...

Vývoj technologie rychlých reaktorů a recyklace paliva

Co kdyby vysokoaktivní jaderný odpad produkovaný jadernými elektrárnami mohl podnítit oběhové  hospodářství v energetickém sektoru?

Nejnovější video

Nad staveništěm největšího tokamaku světa

Proleťte se nad budoucím fúzním reaktorm ITER

close
detail