Jaderná věda odhaluje podvody s potravinami
Když běžní spotřebitelé nakupují potraviny, nemusejí vždy odhalit podvod, i když si budou pečlivě číst etikety. Podvod s potravinami lze definovat jako jakékoli úmyslné jednání s cílem ...
Není mnoho technických oborů, které by v posledních letech zaznamenaly tak výrazný nárůst svého využití jako termografie. Trend v podobě progresivního zdokonalování kamer i periferního vybavení výrazně rozšířil možnosti jejího využití a spolu s klesající pořizovací cenou termokamer zpřístupnil toto všestranně použitelné zařízení široké veřejnosti. Těžko najdeme odvětví, kde by se ve větší či menší míře nedala termokamera uplatnit. Z těch nejznámějších můžeme jmenovat energetiku, medicínu, stavebnictví, strojírenství, dnes už se bez ní neobejdou ani policisté, hasiči či armáda. Široké rozšíření však přináší i nebezpečí v podobě nesprávného používání a interpretace zjištěných hodnot.
Představa, že kamerou zobrazený údaj za všech okolností odpovídá reálné teplotě měřeného objektu, je velmi zavádějící. Bez nadsázky lze říci, že tomu tak ve většině případů není. Pro zajištění požadované přesnosti je bezpodmínečně nutné splnit dva základní předpoklady – použít termovizní kameru odpovídající technické úrovně a mít k dispozici obsluhu znalou principů termografie. Pohříchu je třeba konstatovat, že při laickém používání není většinou splněna ani jedna z těchto podmínek.
Zásadní problém spočívá v tom, že kamera teplotu objektu neměří, ale vypočítává z podnětů v podobě infračerveného záření měřeného objektu a z parametrů zadaných obsluhou. Těchto parametrů je několik.
Nejdůležitější je bezesporu emisivita měřeného objektu coby parametr materiálu. Jde o vyjádření schopnosti povrchu emitovat záření (jeho doplňkem do jedné je součet odrazivosti a propustnosti) a pohybuje se od 0 (absolutně lesklý povrch) až k 1 (absolutně černé těleso). Lze ji sice přibližně stanovit z tabulek; volit je však třeba pečlivě, neboť velmi výrazně ovlivňuje konečný výsledek. Pro většinu materiálů není dokonce ani konstantou.
Emisivita většiny běžných povrchů se mění nejen s úhlem pohledu (směrová emisivita), ale i s teplotou materiálu (spektrální emisivita). Její správné určení je tedy poměrně náročné a vyžaduje znalost příslušných materiálů.
Další v řadě je odražená zdánlivá teplota, respektující vliv záření objektů v okolí měřeného tělesa. Jde rozhodně o nejzáludnější záležitost, neboť pokud všechna ostatní potřebná data získáme z tabulek či změříme, tady musíme hodnotu stanovit, a to se bez zkušeností obejde jen těžko. Samotný postup takového stanovení sice uvádí ČSN, jeho praktické provedení v terénu však nebývá nijak jednoduché. I zde lze v některých případech výsledek významně ovlivnit.
Nakonec jsou zde hodnoty zohledňující vliv atmosféry mezi kamerou a objektem prostřednictvím teploty, vlhkosti a vzdálenosti. Z těchto hodnot si pak kamera vypočítá propustnost prostředí a jeho vlastní příspěvek k zářivému toku dopadajícímu na detektor.
Každý z těchto vyjmenovaných parametrů je součástí rovnice měření, jejímž výsledkem je přiřazení vypočítané hodnoty teploty každému bodu termogramu, a to na základě množství infračerveného záření dopadajícího na příslušnou buňku detektoru.
Samostatným problémem je pak geometrické přizpůsobení. Každý, kdo fotografuje, ví, že schopnost zachytit detail je úměrná rozlišení detektoru. U infračervené termokamery by tedy mělo stačit, že obraz prvku, jehož teplotu se snažíme určit, bude v rovině detektoru alespoň větší než fyzický rozměr jedné buňky detektoru. V opačném případě by se totiž na dané buňce průměrovalo záření z různých povrchů a výsledek by neodpovídal realitě. Ve skutečnosti je ovšem požadavek na velikost měřeného objektu mnohem přísnější. Do hry vstupuje nedokonalost optiky, rozptyl záření uvnitř kamery, nedokonalost detektoru a mnoho dalších vlivů. Tuto hodnotu lze velmi přesně změřit. U drahých a kvalitních termokamer je pak skutečná velikost jednoho bodu termogramu pro správné určení teploty zhruba 3 až 4x větší, u levných systémů až 7x větší v obou osách termogramu.
Rozhodující při výběru různých typů kamer jsou jejich technické možnosti, které samozřejmě určují i pořizovací hodnotu; ta se na trhu pohybuje od několika desítek tisíc za nejjednodušší typy až po několik miliónů korun u kamer pro speciální aplikace. Z širokého spektra parametrů jmenujme jen ty nejzákladnější. Patří sem především rozlišení, které je společně s optickým systémem rozhodujícím faktorem pro přesné měření, zejména na větší vzdálenosti. U běžných kamer se v současnosti pohybuje od 80x60 po 640x480 pixelů. Další výrazné zkvalitnění představuje široká paleta objektivů, kterou disponují vyšší kategorie kamer. Rozsah zorného pole od 6° do 90° nabízí skvělé možnosti využití v jakémkoliv oboru.
Pro ilustraci uvádíme na obrázcích vliv rozlišení na přesnost měření stejného objektu snímaného ze vzdálenosti cca 6 metrů kamerami vyšší kategorie. I když se v obou případech jedná o špičkové rozlišení, rozdíl je markantní.
Termografie je velmi progresivní obor a lze očekávat, že její význam a využití stále poroste. Je však k ní třeba přistupovat obezřetně a s rozmyslem a ve snaze maximálního přiblížení k realitě respektovat výše uvedené principy. Nedílnou, a možná i nejdůležitější částí procesu měření je totiž správné vyhodnocení a analýza skutečně problematických závad. Při termovizním měření v energetice tedy není problém nalézt závadu, problém je správně určit míru její závažnosti.
Když běžní spotřebitelé nakupují potraviny, nemusejí vždy odhalit podvod, i když si budou pečlivě číst etikety. Podvod s potravinami lze definovat jako jakékoli úmyslné jednání s cílem ...
V rámci iniciativy Horizon Europe vznikl výzkumný a vývojový projekt Shift2DC, který bude zkoumat výhody stejnosměrného napájení. Tento ambiciózní program EU je aktuálně v 10.
Srdce naší planety se posledních 14 let otáčí nezvykle pomalu, potvrzuje nový výzkum. A pokud bude tento záhadný trend pokračovat, mohlo by to potenciálně prodloužit pozemské ...
O osudu Golfského proudu rozhodne "přetahovaná" mezi dvěma typy tání grónského ledového příkrovu, naznačuje nová studie. Odtok z grónského ledového příkrovu by ...
Nově nalezená antičástice, zvaná antihyperhydrogen-4, by mohla být potenciálně v nerovnováze se svým částicovým protějškem, což by mohlo poodhalit tajemství původu našeho ...