Jaderná fyzika a energetika

Článků v rubrice: 584

Stabilizace plazmatu v tokamaku - dříve kožich, dnes elektronika

Při uvolňování energie jadernou fúzí je důležitým parametrem pro zachování ustáleného stavu, aby bylo termojaderné plazma izolováno od stěn nádoby pomocí magnetického pole supravodivých cívek. Supravodivé magnetické cívky mají mnohem menší příkon, než jaký by při stejném magnetickém poli vyžadovaly cívky měděné. Díky supravodičům může sice fúzní reaktor pracovat „neomezeně dlouhou dobu“, ale na druhé straně vzniká jiný problém - pomalejší odezva supravodivých cívek ve srovnání s měděnými cívkami, které taková omezení nemají. Při snížené rychlosti odezvy je obtížné udržet stabilní výboj ve velkém objemu plazmatu nebo s protaženým svislým rozměrem - výškou. Studium tohoto problému v současném supravodivém zařízení je zvláště užitečné pro ITER, mezinárodní fúzní experiment ve výstavbě, který by měl ověřit realizovatelnost jaderné fúze pro energetické účely.

Odstávka na výměnu jaderného paliva

Právě teď probíhá v Temelíně důležitá odstávka jaderného reaktoru, během níž se nejen vyměňuje použité palivo za čerstvé, ale probíhají i nejrůznější kontroly, zkoušky a revize. Z reaktoru prvního bloku se vyvezlo během čtyř dní všech 163 palivových souborů. Nyní bude každý soubor pečlivě zkontrolován. Odstávka začala 7. prosince a bude trvat téměř tři měsíce. Pravidelná odstávka druhého bloku začne 30. června a plánuje se na dva měsíce.

Jak neudělat chybu při stavbě tokamaku ITER

Komplex tzv. Trojbudoví na staveništi ITERu má v nejvyšším bodě 60 metrů. 360 000 tun betonu, oceli, střešní konstrukce a veškeré výbavy a bude se opírat o výztužnou konstrukci seismologické jámy. Ta, tvořená železobetonovým základem a stěnami, představuje dalších 80 000 tun. Na obrázku vidíte průřez Komplexem tokamaku s Budovou diagnostiky na pravé straně a Budovou tritiového hospodářství na levé straně. Uprostřed leží betonové biologické stínění tvořící kruhovou jímku, ve které bude zdola nahoru montován vlastní tokamak ITER. Porovnejte čísla na výkresu s níže uvedenými informacemi.

Lithium je primární surovinou pro termojadernou fúzi

Lithium se v poslední době skloňuje ve všech pádech v souvislosti s nalezením jeho zásob v kopcích kolem krušnohorského Cínovce. Je nejen důležitou surovinou pro Li-Ion baterie, ale je také skutečně všestranným způsobem použitelné v zařízeních pro jadernou fúzi. Od počátku tohoto desetiletí se snaží výzkumníci na tokamaku NSTX v Princeton Plasma Physic Laboratory (dotovaném Ministerstvem pro energii USA) zjistit, zda by šlo některé parametry tokamakového plazmatu vylepšit dodáním lithia do vakuové komory, zejména do nesmírně namáhaného divertoru (místa, odkud se odvádějí zplodiny fúzní reakce). Na podobných otázkách se pracuje také na tokamaku LTX ve stejné laboratoři, na DIII-D v General Atomic a na EAST v čínském Hefai.

40 let od spuštění prvního tokamaku v Československu

V září jsme vzpomněli 60 let od spuštění prvního štěpného reaktoru v Československu. Ale bylo ještě další výročí: 40 let od uvedení do provozu prvního tokamaku v Československu. Kořeny této výjimečné události sahají do doby krátce po založení Ústavu fyziky plazmatu v roce 1959. Tehdy se rozhodovalo o náplni jeho práce a Dr. Miloš Seidl navrhl kromě jiného zkoumat vzájemné působení vysokofrekvenčního (vf) elektromagnetického pole a plazmatu. Začala se tím zabývat dvě oddělení, která sice měnila názvy, ale naštěstí ne tématiku. Zatímco v jednom oddělení se studovala vf pole nestabilit samotného plazmatu, druhé se soustředilo na vzájemné působení vf polí buzených vně plazmatu. Jak experimentální tak teoretické práce byly na velmi dobré úrovni. Zejména studium generace proudu vysokofrekvenčními vlnami vzbudila pozornost sovětských vědců, neboť se nabízel způsob, jak vybudit elektrický proud v plazmatu tokamaku jiným způsobem než původní elektromagnetickou indukcí. Ta totiž činila z tokamaku pulzní zařízení, což v perspektivě termojaderného reaktoru na principu tokamaku nebylo příliš lákavé.

Elektronové mikroskopy v diagnostice a vývoji nových materiálů jaderných reaktorů

Jak dochází ke snižování životnosti konstrukčních materiálů používaných v jaderných reaktorech, a jak zajistit jejich bezpečnou práci v extrémních podmínkách, tj. radiačním a korozním prostředí za vysokých teplot? Odborné pracoviště zaměřené právě tuto problematiku je Centrum výzkumu Řež (CVŘ) v Řeži u Prahy, zejména jeho projekt SUSEN (Sustainable energy, Udržitelná energetika), který řeší nejen otázky současných generací jaderných reaktorů, ale zaměřuje se i na vývoj nových materiálů pro vyšší generace jaderných reaktorů a reaktory fúzní pracující v extrémních podmínkách. Odborníci z Centra výzkumu pro vysoce citlivé analytické přístroje (CVCAP) zkoumají v rámci tohoto projektu otázku, jak zlepšit vlastnosti materiálu jaderných reaktorů na základě informací získaných z mikrostrukturních a chemických změn radiačně, tepelně i chemicky exponovaných materiálů. Již druhým rokem jim v tom pomáhá i elektronový mikroskop českého výrobce TESCAN.

... 1 « 51 52 53 54 55 56 57 » 98 ...

Nejnovější články

Teorie původu náboženství

„Bůh je krásný, úžasný vynález lidského mozku“, říká teoretický fyzik a matematik Brian Greene. Je tomu tak? Opravdu není „nad námi“ něco víc, ...

Přes tisíc mladých fyziků na jednom místě

To může znamenat jediné – Fyziklání! Letňany zaplavili nadšení fyzikové! V pátek 14. února proběhl již 19. ročník populární týmové soutěže Fyziklání, ...

Nová tkanina, která vás udrží v teple i v ultrachladném počasí

Nová inteligentní tkanina může zvýšit teplotu o více než 30 stupňů Celsia již po 10 minutách na slunci. Do materiálu jsou zabudovány specializované nanočástice, které absorbují ...

Chytré domácnosti a „hodinoví ajťáci“

Světla, která se sama rozsvítí a zhasnou, topení, které nastaví ideální teplotu, než přijdete z práce, dveře, které se po odchodu zamknou, pračky, myčky a vysavače ovládané na dálku.

Tajemství komplexu menších spliceozomů

V lidských buňkách se k produkci proteinů používá pouze malá část informací zapsaných v genech. Jak buňka vybere ty správné informace? Velký molekulární stroj zvaný ...

Nejnovější video

Stellarátory - budoucnost energetiky?

Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.

close
detail