Reaktory chlazené roztavenými solemi
V krátkodobém horizontu se bude ve světě stavět většina nových reaktorů jako lehkovodní reaktory, tedy stejný typ, který ve 20. století vedl k počátečnímu boomu zavádění jaderné energie.
Grafen, jeden z nejpevnějších materiálů na světě, obvykle nevykazuje magnetické vlastnosti. Ale když poskládáte grafenové vrstvy a trochu je zkroutíte, začnou se dít divné věci. Například se objeví vzácná forma magnetismu. Magnetické pole netvoří spin elektronů v jednotlivých grafenových vrstvách jako obvykle. Magnetické pole vznikne kolektivním vířením elektronů ve všech třech vrstvách složené grafenové struktury. Uvedli to vědci 12. října 2020 v časopise Nature Physics.
Grafen je materiál vyrobený z jediné vrstvy (neboli monovrstvy) atomů uhlíku uspořádaných do vzoru včelí plástve. Je neuvěřitelně lehký a pevný (i když je náchylný k praskání). Vede také elektřinu, což jej činí zajímavým pro použití v elektronice a senzorech.
„Přemýšleli jsme, co by se stalo, kdybychom spojili jednovrstvé grafenové vrstvy do zkrouceného třívrstvého systému,“ uvedl ve svém prohlášení Cory Dean, fyzik na Kolumbijské univerzitě v New Yorku a jeden z hlavních autorů nového článku. „Zjistili jsme, že měnící se počet grafenových vrstev dává těmto kompozitním materiálům některé vzrušující nové vlastnosti, o kterých se dosud nevědělo.“
Když si vědci hrají „Co to udělá, když...“
Dean a jeho kolegové položili na sebe dvě vrstvy grafenu, navrch přidali ještě jednu vrstvu a zkroutili celý systém o 1 stupeň. Poté studovali tento grafenový sendvič za různých okolností, včetně teplot těsně nad absolutní nulou (bod, ve kterém se zastaví veškerý molekulární pohyb). Při těchto nízkých teplotách zjistili, že grafen přestal vést elektřinu a místo toho se stal izolátorem. Zjistili také, že mohou řídit vlastnosti zkroucené složky grafenu aplikací elektrického pole. Když bylo elektrické pole orientováno v jednom směru, systém fungoval jako zkroucená dvojitá vrstva grafenu. Když obrátili pole, složka převzala vlastnosti zkroucené čtyřvrstvé struktury grafenu.
Nový typ magnetizmu
Možná nejpodivnější ze všech pozorovaných jevů byl vzácný magnetismus, který se ve třívrstvé struktuře objevil. Studie publikovaná jinou skupinou v časopise Advanced Materials zjistila, že grafen vázaný na nitrid boru může vykazovat podivné magnetické pole. Toto pole vzniklo z molekulárních vazeb uhlíku v grafenu a boru v nitridu boru. Nový výzkum odhaluje, že stejný typ magnetismu se může vyskytovat pouze v čistém grafenu, jednoduše kvůli interakcím mezi molekulami uhlíku. „Čistý uhlík není magnetický,“ uvedl spoluautor studie Matthew Yankowitz, fyzik z Washingtonské univerzity v Seattlu. „Je pozoruhodné, že tuto vlastnost můžeme vyvolat uspořádáním našich tří grafenových listů a správným úhlem zkroucení.“
Struktura také obsahuje oblasti s vlastnostmi nenarušenými zkroucením. Tyto jedinečné oblasti v materiálu by mohly být využity pro ukládání dat nebo kvantové výpočty, uvedl spoluautor studie Xiaodong Xu, také z Washingtonské univerzity.
Vědci nyní plánují ponořit se hlouběji do základních vlastností struktury grafenu. „Toto je opravdu jen začátek,“ řekl Yankowitz.
V krátkodobém horizontu se bude ve světě stavět většina nových reaktorů jako lehkovodní reaktory, tedy stejný typ, který ve 20. století vedl k počátečnímu boomu zavádění jaderné energie.
„Bůh je krásný, úžasný vynález lidského mozku“, říká teoretický fyzik a matematik Brian Greene. Je tomu tak? Opravdu není „nad námi“ něco víc, ...
To může znamenat jediné – Fyziklání! Letňany zaplavili nadšení fyzikové! V pátek 14. února proběhl již 19. ročník populární týmové soutěže Fyziklání, ...
Nová inteligentní tkanina může zvýšit teplotu o více než 30 stupňů Celsia již po 10 minutách na slunci. Do materiálu jsou zabudovány specializované nanočástice, které absorbují ...
Světla, která se sama rozsvítí a zhasnou, topení, které nastaví ideální teplotu, než přijdete z práce, dveře, které se po odchodu zamknou, pračky, myčky a vysavače ovládané na dálku.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.