Reaktory chlazené roztavenými solemi
V krátkodobém horizontu se bude ve světě stavět většina nových reaktorů jako lehkovodní reaktory, tedy stejný typ, který ve 20. století vedl k počátečnímu boomu zavádění jaderné energie.
Nad Uralem došlo letos 15. února k netradičnímu nebeskému úkazu, jaký nemá v moderní době z hlediska počtu pozorovatelů obdoby (i když šlo o průlet co do velikosti nepříliš velkého tělesa, ke kterému nad povrchem Země dochází několikrát do roka). Nebe s patřičným rachotem proťaly žhavé létavice – zbytek meteoroidu, který v atmosféře explodoval a jehož průlet atmosférou vyvolal tlakovou vlnu. Ta nadělala značnou škodu a ruský Čeljabinsk se stal rázem centrem pozornosti celého světa. Samozřejmě se ihned vyrojila spousta spikleneckých teorií, cože se vlastně stalo. A co tedy? Na Zemi spadl největší zaznamenaný objekt od roku 1908, kdy přilétl tzv. Tunguzský meteorit.
Jestli je někdo odborníkem na dráhu padajících těles, pak jsou to naši čeští astronomové. Již v padesátých letech minulého století v Astronomickém ústavu tehdejší ČSAV založili bolidovou síť (dr. Zdeněk Ceplecha), jejíž zásluhou byl v roce 1959 poprvé v historii fotografován pád meteoritu, následně spočítána jeho dráha ve Sluneční soustavě i v atmosféře Země a zpětně určeno dokonce i místo dopadu. Podle výpočtů vědci tehdy našli Příbramské meteority – první „meteority s rodokmenem“ na světě.
Data dostupná vědcům z Astronomického ústavu neumožňují určit vstupní hmotnost tělesa. Podle vyjádření NASA mělo těleso před vstupem do atmosféry hmotnost 10 000 tun a průměr 17 metrů, avšak tento odhad může být v budoucnu ještě korigován. Těleso bylo nicméně poměrně křehké a z větší části se rozpadlo dosti vysoko v atmosféře. Tlaková vlna, kterou vyvolal nadzvukový průlet kombinovaný s rozpady tělesa, byla tak silná, že v Čeljabinsku a okolí rozbíjela okna a poničila některé budovy. Pokud by těleso bylo pevnější, proniklo by do větší hloubky a způsobilo by tak větší škody. Kdyby byl sklon dráhy v atmosféře větší, účinky tlakové vlny by se koncentrovaly na menší území.
Dráha planetky ve Sluneční soustavě nebyla ničím výjimečná. Jako mnoho podobných těles vedla po eliptické dráze s přísluním poblíž dráhy Venuše a odsluním v pásu planetek mezi Marsem a Jupiterem.
Od uvedeného příbramského úspěchu z roku 1959 si Češi v tomto oboru drží naprosto výsadní postavení ve světovém měřítku a podobný úspěch zopakovali ještě několikrát. Podle svých výpočtů nalezli např. meteorit Neuschwanstein (2002) jako dvojče meteoritu Příbram, meteority Morávka (2000 – první denní bolid s rodokmenem), Benešov (1991, nález 2011 – první meteorit s rodokmenem nalezený 20 let po pádu a navíc složený minimálně ze tří druhů materiálu) a dosud jediné meteority z jižní polokoule Bunburra Rockhole (2007) a Mason Gully (2010).
Možnosti současné techniky vyhledávat nebezpečné planetky a zachytit příští těleso velikosti čeljabinského meteoroidu před jeho dopadem ukážeme na následujících výpočtech. Planetku o průměru 10 metrů, která by již mohla způsobit podobné efekty jako čeljabinský případ, mohou současná sledování zachytit na vzdálenost zhruba 5 milionů kilometrů od Země. Čeljabinský meteoroid se k nám ve dnech před dopadem přibližoval rychlostí 13 km za sekundu, před dopadem byl urychlen gravitací Země na 17,5 km za sekundu. Vzdálenost 5 milionů kilometrů tedy překonal za 4 dny. Na jeho zachycení by tedy měli současná sledování oblohy pouze čtyři dny. Za tu dobu – od 11. do 14. února včetně, pokrývaly stávající sledování oblohy pouze 4 % plochy (přesněji, plného prostorového úhlu) oblohy, což je i průměrná pravděpodobnost zachycení příštího „Čeljabinského meteoroidu“ ještě před jeho dopadem pomocí současné techniky
Podle tiskové zprávy ASÚ AV ČR
O úspěchu českých astronomů v určování přesné dráhy meteoritů jsme již psali v Třípólu v roce 2001 v článku www.www.www.3pol.cz/cz/rubriky/astronomie/88-astronomicka-udalost-stoleti.
Asteroid: Toto slovo, podobně jako výraz „planetka“, označuje „hvězdě se podobající“ či „hvězdný“ objekt. Astronomové dlouhou dobu viděli asteroidy jen jako světlé body putující mezi hvězdami. V češtině se obvykle používá český výraz planetka, který je s ohledem na povahu těchto objektů – které s hvězdami nemají nic společného – výstižnější.
Meteoroid: Malé těleso meziplanetární hmoty – menší než planetka a větší než atom – pohybující se v meziplanetárním prostoru.
Meteorit: Pozůstatek meteoroidu, který dopadl na zemský povrch.
Meteor: Světelný jev provázející průlet meteoroidu atmosférou Země.
Bolidy: Jasné meteory, které svým jasem na pozemské obloze překonají planetu Venuši.
V krátkodobém horizontu se bude ve světě stavět většina nových reaktorů jako lehkovodní reaktory, tedy stejný typ, který ve 20. století vedl k počátečnímu boomu zavádění jaderné energie.
„Bůh je krásný, úžasný vynález lidského mozku“, říká teoretický fyzik a matematik Brian Greene. Je tomu tak? Opravdu není „nad námi“ něco víc, ...
To může znamenat jediné – Fyziklání! Letňany zaplavili nadšení fyzikové! V pátek 14. února proběhl již 19. ročník populární týmové soutěže Fyziklání, ...
Nová inteligentní tkanina může zvýšit teplotu o více než 30 stupňů Celsia již po 10 minutách na slunci. Do materiálu jsou zabudovány specializované nanočástice, které absorbují ...
Světla, která se sama rozsvítí a zhasnou, topení, které nastaví ideální teplotu, než přijdete z práce, dveře, které se po odchodu zamknou, pračky, myčky a vysavače ovládané na dálku.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.