Obnovitelné zdroje

Článků v rubrice: 222

Živá elektrárna

Rostoucí potřeba alternativních zdrojů elektřiny nutí výzkum hledat nové možnosti také v aplikaci poznatků vědeckých disciplín, které s technikou přímo nesouvisejí. Díky objevům molekulární biologie tak klasické solární panely možná brzy získají alternativu.

Fotogalerie (1)
Ilustrační foto

Doslova všechny organické látky, které se účastní biochemických pochodů v dnešních buňkách, vznikají při fotosyntéze.
Ta představuje řadu světlem poháněných reakcí, při nichž se oxid uhličitý z atmosféry přeměňuje za pomoci mnoha vnitrobuněčných enzymů na energeticky bohaté organické molekuly (převážně cukry). Fotosyntézu ovládají rostliny, řasy a fototrofní bakterie, např. sinice.

Fotosyntéza ovlivňuje biosféru
Každoročně se vlivem fotosyntetické asimilace CO2 tvoří v globálním měřítku na Zemi kolem 150 mld tun organických látek a do atmosféry se při tom uvolňuje přibližně 200 mld tun kyslíku. Fotosyntéza se současně výrazně podílela jak na vytvoření, tak na udržování dnešního složení atmosféry. Důležitá je nejen produkce O2, ale též působení fotosyntézy proti nadměrnému zvyšování koncentrace oxidu uhličitého v atmosféře, což by mohlo vést k přehřívání Země (vlivem skleníkového efektu). Z celkového množství dopadajícího slunečního záření dovedou rostliny zpravidla využít při fotosyntéze maximálně jen 1–2 %.

Solární cukrovar
V rostlinách se hlavní proces reakcí spojených se syntézou cukrů odehrává ve specializovaných vnitrobuněčných organelách známých jako chloroplasty. Přeměnu energie zde zajišťují protonové gradienty, tj. potenciálové rozdíly elektricky nabitých částic ležících po stranách membrán. Ty uvnitř chloroplastů vytvářejí uzavřené a vzájemně propojené váčky odborně nazývané tylakoidy, které mají tendenci se sdružovat v nakupeniny, tzv. grana. Tylakoidní membrána obsahuje všechny systémy, které v chloroplastu slouží k zachycení energie. Ze slunečního záření využívají rostliny při fotosyntéze jen energii vlnových délek zhruba mezi 400 až 750 nm (tzv. fotosynteticky účinné záření). Toto viditelné světlo je výběrově zachycováno fotosyntetickými barvivy. Jde o sloučeniny, které díky uspořádání svých molekul (zejména počtu a rozmístění dvojných vazeb) jsou „naladěny“ jen na pohlcení záření v určitém rozsahu vlnových délek. V důsledku toho jsou tato barviva zbarvena doplňkovou barvou v barvě pohlcené (absorbované). Např. chlorofyly mají maximální absorpci v modrofialové a červené části spektra, zbývající vlnové délky ve střední části viditelného spektra se odrážejí jako charakteristické, lidským okem vnímané zelené zbarvení.

Elektřina z fotosyntézy
Tímto procesem se nechal inspirovat tým biologů a techniků z amerického Massachusetts Institute of Technology. Zaměřili se na konkrétní využití fotosynteticky aktivních proteinů schopných podobně jako chlorofyly získat elektrický proud ze slunečního záření. Podařilo se jim izolovat fotosynteticky aktivní proteiny ze špenátu a z fototrofní bakterie a uzavřít je do prostoru mezi dvěma umělými membránami, čímž v podstatě dosáhli podmínek velmi podobných těm, které známe ze skutečných chloroplastů.
Membrány leží mezi vodivými materiály a při dopadu světla (tedy proudu fotonů) na proteiny dochází k excitaci elektronů, depolarizaci na povrchu membrán a tím i vzniku elektrického proudu. Svými výzkumy tak vědci vyvrátili dogma, že obvyklé solární panely nemohou být nahrazeny alternativou založenou na jiném principu než fotoelektrickém jevu ve fotočláncích.
Problémem by se mohla zdát malá účinnost těchto „buněk“ vyrábějících elektrický proud. Zvýšením počtu proteinů na mm2 se však dle vědců výtěžek velmi stupňuje a první pokusy dokládají rovněž dostatečnou životnost. Více informací najdete na http://web.mit.edu />

Michal Šimíček
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Evropský projekt Shift2DC - přepneme na stejnosměrné napájení?

V rámci iniciativy Horizon Europe vznikl výzkumný a vývojový projekt Shift2DC, který bude zkoumat výhody stejnosměrného napájení. Tento ambiciózní program EU je aktuálně v 10.

Vnitřní jádro Země je měkké, křivé, kývá se a zpomaluje rotaci

Srdce naší planety se posledních 14 let otáčí nezvykle pomalu, potvrzuje nový výzkum. A pokud bude tento záhadný trend pokračovat, mohlo by to potenciálně prodloužit pozemské ...

Vlny veder, Golfský proud a tání Grónského ledu

O osudu Golfského proudu rozhodne "přetahovaná" mezi dvěma typy tání grónského ledového příkrovu, naznačuje nová studie. Odtok z grónského ledového příkrovu by ...

Nejtěžší částice antihmoty, jaká kdy byla objevena

Nově nalezená antičástice, zvaná antihyperhydrogen-4, by mohla být potenciálně v nerovnováze se svým částicovým protějškem, což by mohlo poodhalit tajemství původu našeho ...

Neviditelný protein udržuje rakovinu na uzdě

Vědci a spolupracovníci Evropské laboratoře pro mikrobiální výzkum v Hamburku odhalili, jak nestrukturovaný protein zachycuje molekuly podporující rakovinu.

Nejnovější video

Nad staveništěm největšího tokamaku světa

Proleťte se nad budoucím fúzním reaktorm ITER

close
detail