Jaderná věda odhaluje podvody s potravinami
Když běžní spotřebitelé nakupují potraviny, nemusejí vždy odhalit podvod, i když si budou pečlivě číst etikety. Podvod s potravinami lze definovat jako jakékoli úmyslné jednání s cílem ...
V rámci Letní studentské konference pořádané Studentskou unií FJFI vznikl i příspěvek studenta Gymnázia Otokara Březiny a Střední odborné školy Telč Ondřeje Lanče. Jak autor píše, slovo fraktál je odvozeno od latinského slova fractus – zlomený, úlomky. Poprvé jej použil Benoît Mandelbrot, francouzský matematik polského původu. Obecně lze říct, že fraktál je každý geometricky nepravidelný útvar, u něhož po rozdělení na části vzniknou soběpodobné části původního celku.
Pokud ze tří úseček v prvním kroku sestavíme (rovnostranný) trojúhelník a všechny právě popsané konstrukce provádíme vně tohoto trojúhelníka, dostaneme šestiúhelníkovitý obrazec podobný sněhové vločce – Kochovu vločku. Je nazvána podle švédského matematika Helge von Kocha, který ji popsal roku 1904. Její obvod zřejmě roste do nekonečna, její plocha však nikoli.
Plocha původního trojúhelníka je P0 = √3 / 4, v prvním kroku se přičítá 3 (počet stran trojúhelníku) × 1 (počet nových úseček na jedné straně) × P0 / 9 (plocha nového trojúhelníčku), tedy 3× (4 / 9) P0. Počet trojúhelníčků v každém dalším kroku je 4 × větší, ale jejich plocha je jen 1 / 9 z předchozího kroku, takže obecně v n-tém kroku přičítáme 3 (trojúhelník) × 4n-1 (počet nových úseček) × (1 / 9) n P0 (plocha nového trojúhelníčku). Plocha je proto postupně Pn = P0 × (1 + 3/9 ×(1 + 4/9 + 42/92 + 43/93 +…)). To je geometrická řada, jejíž součet je 1,6 × P0. Plocha tedy – na rozdíl od obvodu – neroste neomezeně.
Obrázek prvních čtyř tvarů vedoucích ke Kochově vločce máte např. na
http://en.wikipedia.org/wiki/File:KochFlake.svg
1) KA‘B’ je (po trojnásobném zvětšení) identický s KAB (soběpodobnost); přitom ale
2) KAB sestává ze čtyř úseků KA‘B’.
Připomeňme, že zmenšíme-li měřítko 1:3, pak příslušný kousek úsečky (mající rozměr D = 1), resp. čtverce (D = 2), resp. krychle (D = 3) se do celku vejde třikrát, resp. devětkrát, resp. sedmadvacetkrát. Strana Kochovy vločky je tedy podle D něco mezi úsečkou – čarou, a čtvercem – plochou.
Fraktály lze definovat různě. Nejvýstižnější je zřejmě Mandelbrotova definice z roku 1977: „Fraktál je množina, jejíž hodnota Hausdorffovy (fraktální) dimenze je větší než hodnota dimenze topologické“.
D=log N/log1/r,
kde D je dimenze, N je počet soběpodobných úseků a 1/r faktor změny délky.
Při tvorbě Kochovy křivky („obvodu vločky“) každým krokem ze 3 částí vzniknou 4 nové „stejné“ části; její dimenze je proto D = log 4 / log 3 ≈ 1,26; se svou nekonečnou délkou a divokým tvarem je to víc než čára (D = 1), ale míň než plocha (D = 2).
Byl to francouzský matematik polského původu, narodil se 20. ledna 1924. Studoval pod vedením Gastona Julii, po němž byly později pojmenovány Juliovy množiny. Mandelbrot je považován za zakladatele fraktální geometrie. Jako první definoval pojem fraktál. Mandelbrotova množina je zobrazena černou barvou, ostatní barvy určují, kolik iterací je třeba vypočítat, abychom rozhodli, zda posloupnost jde k nekonečnu.
[2] P. Tišnovský, Seriál Fraktály v počítačové grafice – Root.cz,
http://www.root.cz/serialy/fraktalyv-pocitacove-grafice [cit. 12.7. 2010]
[3] M. Hinner, Jemný úvod do fraktálů,
http://martin.hinner.info/math/Fraktaly/ [cit 12.7. 2010]
[4]Přispěvatelé Wikipedie , Fraktál - Wikipedie, otevřená encyklopedie,
http://cs.wikipedia.org/wiki/Fraktál [cit 12.7. 2010]
[5]Přispěvatelé Wikipedie, Mandelbrotova množina - Wikipedie, otevřená encyklopedie,
http://cs.wikipedia.org/wiki/Mandelbrotova_množina [cit 12.7. 2010]
[6]Přispěvatelé Wikipedie, Kochova křivka - Wikipedie, otevřená encyklopedie,
http://cs.wikipedia.org/wiki/Kochova_křivka [cit 12.7. 2010]
[7]Přispěvatelé Wikipedie, Sierpinského trojúhelník - Wikipedie, otevřená encyklopedie,
http://cs.wikipedia.org/wiki/Sierpinského_trojúhelník [cit 12.7. 2010]
Když běžní spotřebitelé nakupují potraviny, nemusejí vždy odhalit podvod, i když si budou pečlivě číst etikety. Podvod s potravinami lze definovat jako jakékoli úmyslné jednání s cílem ...
V rámci iniciativy Horizon Europe vznikl výzkumný a vývojový projekt Shift2DC, který bude zkoumat výhody stejnosměrného napájení. Tento ambiciózní program EU je aktuálně v 10.
Srdce naší planety se posledních 14 let otáčí nezvykle pomalu, potvrzuje nový výzkum. A pokud bude tento záhadný trend pokračovat, mohlo by to potenciálně prodloužit pozemské ...
O osudu Golfského proudu rozhodne "přetahovaná" mezi dvěma typy tání grónského ledového příkrovu, naznačuje nová studie. Odtok z grónského ledového příkrovu by ...
Nově nalezená antičástice, zvaná antihyperhydrogen-4, by mohla být potenciálně v nerovnováze se svým částicovým protějškem, což by mohlo poodhalit tajemství původu našeho ...