Studenti

Článků v rubrice: 321

Kogenerace s akumulací tepla

Kogenerace s akumulací tepla – takové bylo téma práce Aleše Popelky, které si vybral pro svou úspěšnou účast v soutěži Cena Nadace ČEZ 2014. Svůj soutěžní příspěvek, za který získal druhou cenu v kategorii Klasická elektroenergetika a tepelně energetická zařízení, uvedl slovy: „Kogenerační jednotky jsou v dnešní době velice nasazované pro svou vysokou účinnost přeměny energie v plynu na energii elektrickou a tepelnou; ta dosahuje až 95 %. Proto jsem vytvořil model provozu kogeneračních jednotek v síti centrálního zásobování teplem (CZT) tak, abychom mohli v daném projektu u nasazených jednotek zkoumat a hodnotit jejich technické i ekonomické parametry.“ Další podrobnosti čtenářům Třípólu nabízí v následujícím článku. K úspěšné účasti v soutěži mu blahopřejeme.

Fotogalerie (10)
Aleš Popelka obhajuje svou práci před porotcem doc. Rosenkranzem v soutěži Cena Nadace ČEZ 2014 (Foto ČEZ)

Model jsem vytvořil pomocí softwaru Mathematica, který umožňuje snadnou práci s daty a rychlý výpočet daného modelu. Kogeneračních jednotek existuje více druhů, model však byl navržen především pro kogenerační jednotky se spalovacím motorem na zemní plyn. Jejich velkou předností je téměř okamžité spínání a vypínaní, a to aniž by docházelo k poškození technologické části. Nevýhodou jednotek je velice malá regulovatelnost výkonu – jednotky se regulují jejich spínáním a vypínáním. Vytvořený model slouží k posouzení nejvhodnější řídicí strategie pro ovládání jednotek, tak abychom uspokojili předpokládaný tepelný požadavek.

Systémy s kogeneračními jednotkami spalovacího motoru

Celý systém s kogeneračními jednotkami na principu spalovacího motoru se skládá z kogeneračních jednotek, z akumulačních nádrží na teplou vodu a z kotle spalujícího zemní plyn; ten slouží při vypnutých kogeneračních jednotkách jako špičkový nebo záskokový. Akumulační nádrže pomáhají přizpůsobit výkon kogeneračních jednotek na tepelný požadavek a umožňují časově posouvat výrobu tepelné energie oproti její spotřebě.

 

Princip modelu

Model počítá pokrytí tepelného požadavku pro každou hodinu v roce, a následně vypočítá potřebnou elektrickou i tepelnou energii (obr. 1). Dále model obsahuje model zásobníků teplé vody, včetně modelu odebírání a ukládání teplé vody i následných tepelných ztrát pláštěm zásobníku. Vývojový diagram celého modelu je na obr. 2.

 

Výstup z modelu

Z modelu získáme několik výstupů. První nám ukáže, jak byl tepelný požadavek uspokojen v každé hodině v roce (obr. 3). Dalším výstupem jsou křivky trvání výkonů všech technologických částí (obr. 4). Musíme také znát, kolik energie kogenerační jednotky vyrobily během jednoho roku (obr. 5). Z modelu zásobníku dostaneme průběh teplot ve všech zásobnících vody (obr. 6). Poslední výstupem je ekonomické vyhodnocení projektu (obr. 7).

 

Hledání optimálního spínání kogeneračních jednotek

Model disponuje mnoha možnostmi nastavení. Vzhledem k tomu, že uspokojuje jak hlediska technická, tak i ekonomická, je při realizaci projektů s kogeneračními jednotkami velkým pomocníkem. Zkoušel jsem s ním například, jak by čistou současnou hodnotu měnilo zapínání jednotky podle ceny elektrické energie na spotovém trhu, kde bychom elektrickou energii prodávali (obr. 8). Dále jsem chtěl zkoumat změny čisté současné hodnoty v případě změny velikosti akumulačních nádrží (obr. 9).

 

Praktické uplatnění

Model je vhodným pomocníkem pro hledání řídicí strategie, výběru technologie a složení technologické části pro současné projekty využívající kogenerační jednotky nebo i pro projekty plánované. Pro výrobce elektrické energie jsou stanoveny zelené bonusy, které jsou pro provoz kogeneračních jednotek velikou finanční oporou. Výše bonusů se stanoví podle počtu provozních hodin jednotek v jenom roce (3 000, 4 400, popř. 8 400 hodin). V našem případě vychází nejlepší ekonomické hodnocení pro provoz jednotek do 4 400 hodin za rok.

 

Model lze použít i pro výpočet řídicí strategie provozu kogeneračních jednotek při změně výše zelených bonusů nebo při jejich zrušení. Nad budoucností zelených bonusů totiž visí veliký otazník. Dále může být model užitečným pomocníkem i při vytváření projektů provozu plánovaných virtuálních elektráren.

Aleš Popelka
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Evropský projekt Shift2DC - přepneme na stejnosměrné napájení?

V rámci iniciativy Horizon Europe vznikl výzkumný a vývojový projekt Shift2DC, který bude zkoumat výhody stejnosměrného napájení. Tento ambiciózní program EU je aktuálně v 10.

Vnitřní jádro Země je měkké, křivé, kývá se a zpomaluje rotaci

Srdce naší planety se posledních 14 let otáčí nezvykle pomalu, potvrzuje nový výzkum. A pokud bude tento záhadný trend pokračovat, mohlo by to potenciálně prodloužit pozemské ...

Vlny veder, Golfský proud a tání Grónského ledu

O osudu Golfského proudu rozhodne "přetahovaná" mezi dvěma typy tání grónského ledového příkrovu, naznačuje nová studie. Odtok z grónského ledového příkrovu by ...

Nejtěžší částice antihmoty, jaká kdy byla objevena

Nově nalezená antičástice, zvaná antihyperhydrogen-4, by mohla být potenciálně v nerovnováze se svým částicovým protějškem, což by mohlo poodhalit tajemství původu našeho ...

Neviditelný protein udržuje rakovinu na uzdě

Vědci a spolupracovníci Evropské laboratoře pro mikrobiální výzkum v Hamburku odhalili, jak nestrukturovaný protein zachycuje molekuly podporující rakovinu.

Nejnovější video

Nad staveništěm největšího tokamaku světa

Proleťte se nad budoucím fúzním reaktorm ITER

close
detail