Litevské lasery
Lasery, široce používané ve vědě a průmyslu, dnes otevírají úžasné možnosti v různých oborech – od polovodičů, spotřební elektroniky až po lékařské aplikace.
Malé nepravidelnosti neboli „chybná pole“ v magnetickém poli tokamaků mohou být příčinou nestability plazmatu. V tokamacích, jako bude ITER, se tyto nepravidelnosti „vyhlazují“ pomocí speciálních řiditelných cívek. Návrh ITER zahrnuje 18 supravodivých korekčních cívek umístěných mezi cívky toroidálního a poloidálního pole, které budou kompenzovat chyby v polích způsobené geometrickými odchylkami danými tolerancemi při výrobě a montáži. V každém případě jsou účinné metody zjištění chybných polí a nastavení optimálních proudů v korekčních cívkách velkou výzvou i pro současná fúzní zařízení.
Vědci na tokamaku DIII-D National Fusion Facility, největším magnetickém fúzním zařízení ve Spojených státech, vyvinuli novou metodu pro minimalizaci asymetrie magnetických polí v tokamaku. Metoda spočívá ve zvýšení rotace udržovaného plazmatu během jediného výstřelu (zažehnutí výboje v plazmatu) a byla úspěšně otestována v přípravných pokusech na tokmaku DIII-D.
On-line korekce
Nová metoda nastavuje proudy v korekčních cívkách spojitě v reálném čase (on line), což je pochopitelně výhodnější než přibližné, předem spočítané korekce. Jeden z účinků chybného pole je totiž brzdící síla, která zpomaluje otáčení plazmatu.Řídicí systém na základě měření rychlosti otáčení plazmatu v reálném čase spojitě mění magnetické pole korekčních cívek. Použitím moderních metod tento proces rychle určí optimální korekční pole minimalizující brzdění rotace.
Maximalizace rotace plazmatu v reálném čase má několik výhod: snižuje nebezpečí nechtěné destabilizace plazmatu; spojitě zjišťuje změny zdrojů chybných polí pro nastavení nejlepších podmínek plazmatu během výboje, což umožňuje účinnou optimalizaci korekčního pole během jediného výstřelu (simulace naznačují, že optimalizační proces v tokamaku ITER může být dosažen v několika málo sekundách).Tyto výhody činí novou metodu slibnou volbou pro lepší fungování tokamaku ITER díky minimalizaci nežádoucích účinků chybných polí.
Poznámka k obrázku
Všimněte si „X-bodu“ v horní části plazmatu průřezu písmene D na plakátu v obrázku. DIII-D je jeden z mála tokamaků, které mohou fungovat jak s horním, tak dolním, nebo oběma „X body“ současně.X bod je okamžik na separatrixe (poslední, resp. hraniční uzavřené silokřivce), kdy se chod uzavřených silokřivek (magnetických povrchů) ve vakuové komoře tokamaku mění v otevřený a tyto silokřivky dopadají na terče, resp. oblouk divertoru. Uzavřené silokřivky/povrchy se nedotýkají žádné části vakuové komory. Plazma je takto pomocí magnetického pole od vnitřní stěny vakuové komory izolované. Plazma putující vně bodu X po otevřených siločárách/površích po dopadu na divertor deionizuje a coby neutrální plyn se odčerpá mimo vakuovou komoru. Protože na okraji plazmatu tokamaku se nacházejí nečistoty včetně popela = helia, divertor ve spolupráci otevřenými magnetickými povrchy čistí plazma. JET má jeden bod X, ITER bude mít také jeden bod X, ale experimentuje se se dvěma body X - to je příklad tokamaku DIII-D. Na dalším obrázku je znázorněn průřez divertorem s bodem X. Bod X se v praxi vyrobí tak, že se pod cívky toroidálního pole vloží poloidální cívka.
Lasery, široce používané ve vědě a průmyslu, dnes otevírají úžasné možnosti v různých oborech – od polovodičů, spotřební elektroniky až po lékařské aplikace.
V Indickém oceánu je oblast, kde je slabší gravitace, nižší než je průměrná jinde na hladině moří. Prohlubeň leží v Lakadivském moři asi 1 200 km jihozápadně od Indie a byla objevena v roce 1948.
Astronauti na palubě čínské vesmírné stanice „Nebeský palác“ předvedli nový způsob výroby raketového paliva a dýchatelného kyslíku napodobením chemické reakce v rostlinách.
Již od roku 1993 myslí energetická společnost ČEZ na to, jak podpořit vzdělávání veřejnosti, a hlavně mladých, v oblasti techniky. Energetika bude potřeboval stále více techniků (a nejen těch) ...
V rekordním čase se Dominikánské republice podařilo úspěšně potlačit nový vpád středomořské ovocné mušky, vysoce destruktivního škůdce ohrožujícího zemědělskou produkci po celém světě.
Zjímavý průřez historií jaderné fúze a propagace jednoho ze směrů výzkumu - stellarátorů. množstvím animací i reálných záběrů podává srovnání se současnými tokamaky.