Jaderná fyzika a energetika

Článků v rubrice: 551

Co jsou rekombinátory vodíku

Uvnitř kontejnmentů a reaktorových hal jaderných elektráren se umisťují tzv. rekombinátory vodíku. Jsou připraveny zafungovat v případě, že by se v ovzduší objevil plynný vodík – ten totiž v kombinaci se vzduchem vytváří třaskavou směs. Rekombinátory vodík „vychytají“ a podstatně tak snižují nebezpečí exploze uvnitř jaderného zařízení v případě hrozící havarijní události.

Fotogalerie (4)
Projekt umístění rekombinátorů na stěnách kontejnmentu reaktoru EPR (Zdroj: Areva)

Havárie v jaderné elektrárně Fukušima sice nikoho nepřipravila o život, vzbudila však diskuse o zabezpečení jaderných zařízení proti přírodním katastrofám nečekané síly. Na mnoha elektrárnách ve světě proto proběhly takzvané zátěžové testy, které prověřovaly, jak by si dané zařízení poradilo s podobnou situací, které musela čelit právě Fukušima – záplava doprovázená ztrátou elektrického napájení a chlazení. Jedním z navrhovaných preventivních opatření proti tzv. nadprojektovým a i maximálně nepravděpodobným haváriím je zvýšení počtu rekombinátorů vodíku. Právě nahromadění vodíku, výbuch a destrukce střechy nad ochrannou obálkou reaktoru totiž ve Fukušimě způsobilo největší problém.

Jak může vodík vzniknout?
Vodík se vyvíjí při reakci horké vodní páry s kovy. Při hypotetické havárii tedy může vzniknout v důsledku reakce mezi zirkoniovým pokrytím palivového proutku a chladivem, při radiolytickém rozkladu vody, nebo díkykorozi kovů vystavených roztokům použitým při sprchování kontejnmentu a ze systému havarijního chlazení aktivní zóny. Vodík je ale také – díky větší tepelné vodivosti ve srovnání se vzduchem a tím vyšší účinnosti – často používaným chladicím médiem v elektrických generátorech, motorech a frekvenčních převaděčích. Nebezpečí jeho výskytu tedy existuje i v mnoha jiných průmyslových provozech, než jen u jaderných reaktorů.

Nejnebezpečnější jsou dva režimy hoření vodíku – rychlá tzv. deflagrace (horký hořící materiál ohřívá další vrstvu chladnějšího materiálu a zapaluje ho) a detonace (výbuch, chemická reakce šířící se nadzvukovou rychlostí). Při projektování jaderné elektrárny se hodnotí „vodíkové riziko“, tj. jaké množství vodíku se při projektem uvažovaných největších haváriích může objevit, a analyzují se časové průběhy šíření vodíku v celém prostoru kontejnmentu. Podle toho se pak interiér vybaví dostatečnou kapacitou rekombinátorů. Například kontejnmenty bloků Jaderné elektrárny Temelín jsou vybaveny systémem automaticky fungujících autokatalytických rekombinátorů, který je schopen dlouhodobě likvidovat vodík uvolňovaný při haváriích a v pohavarijních podmínkách a tím udržovat koncentraci vodíku pod hranicí 2,5 % objemových. Při ní nemůže dojít k jeho zapálení – koncentrace vodíku odpovídající hranici vznícení má hodnotu 4 objemová %.

Jak funguje rekombinátor

Zařízení využívá zajímavou vlastnost vodíku – schopnost „rozpouštět“ se v některých kovech, např. v palladiu nebo platině; ty pak fungují jako katalyzátory a vodík z ovzduší „vychytají“. Umožňují to velmi malé molekuly vodíku, které mohou procházet různými materiály. Rekombinátor tedy funguje na principu katalytického spalování vodíku, tj. exotermního slučování vodíku a kyslíku za vzniku vodní páry, která zůstává v kontejnmentu. Proces rekombinace začíná v závislosti na teplotě už při objemové koncentraci vodíku 2 % při teplotě menší než 100 oC a při koncentraci 1 % při teplotě převyšující 100 oC. V závislosti na koncentraci vodíku v ovzduší dokáží nejúčinnější typy vyčistit až 1 500 m3 vzduchu za hodinu. Rekombinátory nepotřebují elektrické napájení, žádné aktivační ani řídicí prvky, ani zásahy obsluhy. Mají podobu plechové nerezové krabice s mřížkou pro výstup vzduchu, uvnitř jsou tzv. autokatalytické bloky tvořené porézním materiálem s platinou. Bloky jsou vodoodpudivé a termostabilní, odolné vůči katalytickým jedům, což zaručuje spolehlivou práci i při nejtěžší projektové havárii až do koncentrace vodíku 10 objemových %. Vykazují i dlouhou životnost (až 30 let). Při reakci vodíku s katalyzátorem se vyvíjí teplo, které napomáhá k proudění vzduchu – teplejší stoupá vzhůru a spodem se samočinně nasává do zařízení vzduch nový. Tímto způsobem se zvyšuje účinnost.

Marie Dufková
Poslat odkaz na článek

Opište prosím text z obrázku

Nejnovější články

Nové jaderné projekty pro Evropu

Nejen Česká republika, která v právě probíhajícím výběrovém řízení poptává 4 nové jaderné bloky, ale i další evropské země plánují rozvoj jaderné energetiky.

Solární rok 2023

Vývoj solární energetiky v roce 2023 v Česku opět výrazně přidal na rychlosti. Podle dat Solární asociace se postavil téměř 1 gigawatt nových fotovoltaických elektráren (FVE), celkem jich vzniklo skoro 83 000.

Přehled současného stavu SMR ve světě

O  SMR, malých modulárních reaktorech, jsme již psali několikrát. Ze souhrnného materiálu NEA (Jaderné energetické agentury OECD) jsme pro čtenáře Třípólu vybrali přehledy jednotlivých projektů (stav v r.

Co s vysloužilými fotovoltaickými panely, turbínami a bateriemi?

Růst výroby elektřiny z obnovitelných zdrojů energie (OZE) a růst počtu elektrických vozidel (EV) je klíčem ke globálnímu snížení závislosti na fosilních palivech, snížení ...

Co nám vodní houby mohou říci o vývoji mozku

Když čtete tyto řádky, pracuje vysoce sofistikovaný biologický stroj – váš mozek. Lidský mozek se skládá z přibližně 86 miliard neuronů a řídí nejen tělesné funkce od vidění ...

Nejnovější video

Jak funguje PCR test na coronavirus

Krásně a jednoduše vysvětleno se srozumitelnými animacemi. V angličtině.

close
detail